Journal Papers

39. Mohammad Reza Zamani Kouhpanji, Zohreh Nemati, M Mahmoodi, Joseph Um, Jaime Modiano, Rhonda Franklin, and Bethanie Stadler, “Realizing the principles for designing magnetic nanowires for remote and selective detection of cancer cells,” Journal of Physical Chemistry B, vol. 125 (28), 7742-7749, May 2021.

38. Mohammad Reza Zamani Kouhpanji, Zohreh Nemati, Mohammad Mohsen Mahmoodi, Joseph Um, Jaime Modiano, Rhonda Franklin, Bethanie Stadler, “Selective Detection of Cancer Cells Using Magnetic Nanowires,” ACS Applied Materials & Interfaces, vol. 13 (18), April 2021.

37. Joseph Um, Yali Zhang, Wen Zhou, Mohammad Reza Zamani Kouhpanji, Cosmin Radu, Rhonda Franklin, and Bethanie Stadler, “Magnetic Nanowires Using Ferromagnetic Resonance Identification (FMR-ID),” ACS Applied Nano Materials, vol. 4 (4), pp. 3557-3564, March 2021.

36. Yali Zhang, Joseph Um, Bethanie Stadler, Rashaunda Henderson, and Rhonda Franklin, “Study of Nanowire-based Integrated Via Technology for CMOS Application in Millimeter-wave Frequencies,” Microwave Wireless Component Letters, vol. 31 (6), pp. 693-696, June 2021. (Selected from top 50 conference papers at the 2021 IMS Conference, June 2021, Atlanta, GA).

35. Papa K Amoah, Pengtao Lin, Helmut Baumgart, Rhonda R Franklin, and Yaw S Obeng, “Broadband dielectric spectroscopic detection of volatile organic compounds with ZnO nanorod gas sensors,” J. Phys. D: Applied Physics, vol: 54 (13), 135104, Jan 22, 2021, https://doi.org/10.1088/1361-6463/abd3ce.

34. Zohreh Nemati , Mohammad Reza Zamani Kouhpanji, Fang Zhou, Raja Das, Kelly Makielski, Joseph Um, Manh-Huong Phan, Alicia Muela, Mª Luisa Fdez-Gubieda, Rhonda R. Franklin, Bethanie J.H. Stadler, Jaime F. Modiano, Javier Alonso, “Isolation of cancer derived exosomes using a variety of magnetic nanostructures: from Fe3O4 nanoparticles to Ni nanowires,” Nanomaterials, vol. 10 (9), (1662), 2020; doi: 10.3390/nano10091662.

33. Zohreh Nemati, Thomas Gage, Mohammad Reza Zamani Kouhpanji, Joseph Um,Alicia Donnelly, Daniel Shore, Kelly Makielski, Yali Zhang, Rhonda Franklin, Jaime F. Modiano, and Bethanie J. Stadler, “Magnetic isolation and identification of exosomes using Fe/au nanowires,” Cancer Research, vol. 79 (13 supplement), July 2019, pp. 1341-1341; DOI: 10.1158/1538-7445.AM2019-1341 

32. Y. Zhang, J. Um, B. Stadler and R. Franklin, "Permeability and Ferromagnetic Resonance Study for Magnetic Nanowires Substrate with Copper Layer," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 11, pp. 1065-1068, Nov. 2020, doi: 10.1109/LMWC.2020.3025490.

31. W. Zhou, J. Um, Y. Zhang, A. Nelson, Z. Nemati, J. Moidiano, B. Stadler, and R. Franklin, “Development of a Biolabeling System Using Ferromagnetic Nanowires,” in IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 3, no. 2, pp. 134-142, June 2019, doi: 10.1109/JERM.2018.2889049.

30. C. Lee, B. Sainati, and R. Franklin, “Frequency Selective Surface Effects on a Coplanar Waveguide Feedline in Fabry-Perot Cavity Antenna Systems,” 2018 IEEE Microwave Wireless Components Letters, Vol. 17, No. 5, 2018.

29. Y. Obeng,C. Okoro, P. Amoah, R. Franklin, P. Kabos, Low Frequency Radio Wave Detection of Electrically Active Defects in Dielectrics,” ECS Journal of Solid State Science and Technology 01/2016; 5(4):P3025-P3030. DOI: 10.1149/2.0051604jss. Link: http://jss.ecsdl.org/content/5/4/P3025.abstract

28. L. You, C. Okoro, J. Ahn, J. Kopanski, R. Franklin, and Y. Obeng, Broadband Microwave-Based Metrology Platform Development: demonstration of In-Situ Failure Mode Diagnostic Capabilities for Integrated Circuit Reliability Analyses, ECS J. Solid State Sci, Technol. 2015 (online), Vol. 4, No. 1, N3113-N3117, DOI: 10.1149/2.0151501jss. Link: http://jss.ecsdl.org/content/4/1/N3113.abstract.

27. Casey Murray and Rhonda R. Franklin, “Independently Tunable Annular Slot Antenna Resonant Frequencies Using Fluids,” IEEE Antennas and Wireless Propagation Letters, 2014, pp.1449 – 1452, Digital Object Identifier: 10.1109/LAWP.2014.2341232. Link: http://ieeexplore.ieee.org.ezp1.lib.umn.edu/stamp/stamp.jsp?tp=&arnumber=6861425

26. J. Frolik, P. Flikkema, T. Weller, C. Haden, W. Shiroma and R. Franklin, Leveraging multi-university collaboration to develop portable and adaptable online course content, ASEE Advances in Engineering Education (online), Vol. 3, No.3, Winter 2013.

25. C. Murray and R. R. Franklin, “Edge Coupled Variable Microfluidic Directional Coupler,” Microwave and Optical Letters, vol. 55, no. 4, pp. 756-758, April 2013.

24. C. Murray and R. R. Franklin, “Impedance Matching using Fluidic Channels in Coplanar Waveguide Structures,” Microwave and Optical Letters, vol. 55, no. 4, pp. 789-793, April 2013.

23. Y. S. Cho and R. R. Franklin, “Conducting Polymer Material Characterization Using High Frequency Planar Transmission Line Measurement“ Transactions on Electrical and Electronic Materials, Vol. 13, No. 5, pp. 237-240, October 25, 2012, DOI: http://dx.doi.org/10.4313/TEEM.2012.13.5.237.

22. Y. Liu, H. Kim, R. Franklin, D. Bond, “Linking Spectral and Electrochemical Analysis to Monitor c-type Cytochrome Redox Status in Living Geobacter sulfurrenducens Biofilms,” CHEMPHYSCHEM, vol. 12, no. 12, pp. 2235-2241, 2011, DOI: 10.1002/chphc.201100246.

21. Y. Liu, H. Kim, R. Franklin, and D. R. Bond, “Gold line array electrodes increase substrate affinity and current density of electricity-producing G. sulfurrenducens, biofilms,” Energy and Environmental Science, vol. 3, no. 11, pp. 1782-1788, 2010, DOI. 10.1039/c0ee00242a.

20. Y-S. Cho and R. Franklin-Drayton, “Development of Ultra-Broadband (DC-50GHz) Wafer-Scale Packaging Method for Low Profile Bump Flip-Chip Technology,” IEEE Transactions on Advanced Packaging, vol. 32, no. 4, pp. 788-96, Nov. 2009. 

19. Y-S. Cho and R. Franklin-Drayton, “Characterization and Lumped Circuit Model of Ultra-Wideband Flip-Chip Transitions (DC - 110 GHz) for Wafer-Scale Packaging,” Microwave and Optical Technology Letters, vol. 51, no. 5, pp. 1281-5, May 2009.

18. H. Kim and R. Franklin-Drayton "Wire-Bond Free Technique for Right-Angle Coplanar Waveguide (CPW) Bend Structures,” IEEE Transaction on Microwave Theory and Techniques, vol. 57, no. 2, pp. 442-8, Feb. 2009.

17. S.R. Banerjee, C. Zheng, and R.F. Drayton, "A 3D Miniaturization Method for Low Impedance Designs," IEEE Transactions on Advanced Packaging - Special Issue on The Electrical Performance of Packages and Interconnects, vol. 30, no. 2, pp. 200-208, May 2007.

16. S.R. Banerjee and R. F. Drayton, “50 GHz Integrated Interconnects in Silicon Optical Microbench Technology, IEEE Transactions on Advanced Packaging, vol. 29, no. 2, pp. 307-313, May 2006.

15. T. Pan, A. Baldi, E. Davis-venn, R. F. Drayton, and B. Ziaie, “Fabrication and modeling of silicon-embedded high-Q inductor,” J. Micromech. Microeng., vol. 15, pp. 849–854, March 11, 2005.

14. S. R. Banerjee and R. F. Drayton, “Circuit models for constant impedance micromachined lines on dielectric discontinuities,” IEEE Trans. Microwave Theory and Techniques, vol. 52, pp. 105-111, Jan. 2004.

13. Rajesh R. Patel, Steven W. Bond, Michael D. Pocha, Michael C. Larson, Henry E. Garrett, Rhonda F. Drayton, Holly E. Petersen, Denise M. Krol, Robert J. Deri, and Mark E. Lowry, "Multi-wavelength parallel optical interconnects for massively parallel processing,” IEEE J. Select. Top. Quant. Elec., vol. 9, no. 2, pp. 657-666, March-April 2003.

12. Rebecca Lorenz Peterson and Rhonda Franklin Drayton, “A CPW T-Resonator technique for electrical characterization of microwave substrates,” IEEE Microwave and Wireless Components Letters, vol. 12, no. 3, pp. 90-92, Mar. 2002.

11. Rhonda Franklin Drayton, S. Riki Banerjee, and Jeremy L. Haley, “Characterization of micromachined transitions for high-speed integrated packages,” IEEE Transactions on Antennas and Propagation, Special Issue on Wireless Technology, vol. 50, no. 5, pp. 693-697, May 2002.

10. Rhonda Franklin Drayton, Sergio Palma Pacheco, Jianpei Wang, Jong-Gwan Yook, and Linda P.B. Katehi, “Micromachined Filters on Synthesized Substrates,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 2, pp. 308-314, Feb. 2001.

9. R. F. Drayton, R. M. Henderson, and L.P.B. Katehi, “Monolithic packaging concepts for high isolation in circuits and antennas,” IBM Journal of Research and Development, vol. 44, no. 5, pp. 715-723, Sept. 2000. (reprinted from Microwave Theory and Techniques, vol. 46, pp. 200-906, 1998).

8. R. F. Drayton, R. M. Henderson, and L. P. B. Katehi, “Monolithic packaging concepts for high isolation in circuits and antennas,” IEEE Trans. on Microwave Theory and Techniques, vol. 46, no. 7, pp. 900-906, Jul. 1998.

7. Ioannis Papapolymerou, Rhonda Franklin Drayton, and Linda P. B. Katehi, “Micromachined patch antennas,” IEEE Trans. Antennas Propagat., vol. 46, no. 2, pp. 275-283, Feb. 1998.

6. R. F. Drayton, R. M. Henderson, and L. P. B. Katehi, “High frequency circuit components on micromachined variable thickness substrates,” IEE Electronics Letters, vol. 33, no. 4, pp. 303-304, Feb. 1997.

5. Rhonda Franklin Drayton and Linda P. B. Katehi, “Development of self-packaged high frequency circuits using micromachining techniques,” IEEE Trans. on Microwave Theory and Tech., vol. 43, no. 9, pp. 2073-2080, Sept. 1995. 

4. Rhonda Franklin Drayton, Nihad I. Dib, and Linda P. B. Katehi, “Design of micromachined high frequency circuit components,” International Journal of Microcircuits & Electronic Packaging, vol. 18, no. 1, p. 19-28, First Quarter 1995. 

3. (Invited Paper) R. F. Drayton, T. M. Weller, and L. P. B. Katehi, “Development and characterization of miniaturized circuits for high frequency applications using micromachining techniques,” The International Journal of Microcircuits and Electronic Packaging, vol. 18, no. 13, p. 217-224, Third Quarter 1995. 

2. (Invited Paper) L. P. B. Katehi, G. M. Rebeiz, T. M. Weller, R. F. Drayton, et, al., “Micromachined circuits for millimeter- and sub-millimeter-wave applications,” IEEE Antennas and Propagation Magazine, vol. 35, no. 5, pp. 9-17, Oct. 1993. 

1. N. I. Dib, R. F. Drayton, and L. P. B. Katehi, “A theoretical and experimental study of microshield circuits,” Microwave and Optical Technology Letters, vol. 6, no. 6, pp. 333-339, May 1993